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BLOCK RELAXATION TECHNIQUES FOR
FINITE-ELEMENT ELLIPTIC EQUATIONS:
AN EXAMPLE

by

Daniel L. Boley and Seymour V. Parter

ABSTRACT

Consider the Ritz-Galerkin equations for the numerical
solution of the two—point boundary value problem

u"' =f, 0 <x<1,

u(o) = u(l) = 0.

We consider Ritz-Galerkin subspaces of hermite cubic splines
with equally spaced knots. These equations are then solved
via iterative methods. The rate of convergence of these
methods is estimated.




1. INTRODUCTION

In [1] Boley, Buzbee and Parter developed an approach for obtaining
asymptotic formulas for the "rates of convergence'" for some block iterative
methods applied to the solution of the "model problem." That is, we

consider the boundary value problem

3% Bu
by = 5 + =5 = £(x,y), (x,y) € Q

9x ay

(1.1

(1.2) u(x,y) = g(x,y) , (x,y) €9 Q

where ! is unit square 0 < x,y < 1. The algebraic problem arises when A
is replaced by Ah s, the well known five point difference approximation.
The work in [1] was based on the ideas developed in [4].

In view of the popularity of finite-element methods for the numerical
solution of (1.1)-(1.2), it seems desirable to investigate the applicability
of these i1deas for those linear algebraic problems which arise in the
finite-element problems.

In this preliminary report we consider the simplest two-point boundary

value problem

(1.3) u"(x) = £(x) , 0<x<1

(1.4) u(0) = u(l) =0 .
We discuss a Ritz-Galerkin method based on Hermite cubic splines. We
then analyze two particular block iterative methods for the solution of

the ensuing linear algebraic system. It is quite clear that this analysis

can be extended to a large class of block iterative methods for the general

two-point boundary value problem

(1.5) (Px)u')' - q(x)u = £(x) , 0<x<1




(1.6) u(0) = u(l) =0 .

However, in order to give a complete, clear discussion without
unnecessary complications, we limit outselves to the simplest case.
2. THE SIMPLEST TWO-POINT BOUNDARY VALUE PROBLEM: FORMULATION

Consider the boundary value problem
d 2
(2.1) (a; u(x) = f(x) , 0<x<1
(2.2) u(0) = u(l) = 0

In this section we describe the Ritz-Galerkin method based on Hermite
cubic splines. While this has been done many times [5], [6], {7], it will
be of some advantage to pinpoint certain basic facts.

Let an integer N > 0 be chosen and let h = 1/N+l1 and let Xy
k=0,1, ... N¥1. Let S(h) be the space of Hermite cubic splines on the

= kh,

knot sequence {xk} which satisfy (2.2). That is

(2.3) S(h) = {U(x)e clo,11, U(0) = v@) = 0 , U(x), e H4(Ik)}
T
where Ik is the interval (xk’xk+1) and HA(Ik) is the space of polynomials
of order 4 (degree < 3) defined on Ik .
Let hj(x) and h;(x) be given as in [5, Chap. 3]. These functions are
a basis for S(h). In fact, if ¢(x)e S(h) then

N N+1
28 6 =D slx) bl + D 8" (5) B
k=1 k=0

The Ritz-Galerkin equations for an approximant U(x)e S(h) to u(x),

the solution of (2.1), (2.2), are given by;

(2.5a) - (9',U0") = (¢,£) V ¢e S(h)



where

1 o
(2.5b) (g,v) = J; g(x) v(x) dx .

Letting ¢ run over the 2N+2 basis vectors hk(x), hi(x) we obtain 2N+2

unknowns U(xk), U'(x

(2.6a) U'(xo)’ U(xl)s U'(xl)a

k)'

then the equations (2.5a) take the form

(2.6b)

where A(h) is best described as a block tridiagonal matrix (see [5, Chap. 7],

[6, Sect. 1.7])

(2.72) A(h) = T
where

(2.7b)

(2.7¢) Bk =
(2.74)

(2.7e) Ck =

12/5

A(h) U = £

T
[Ck—l’ By Ck]

B

vos U(xk), U'(xk), cen

k=1, 2, ... N+2

2
1 = By42 = 2h"/15 ,

k=2, 3, ...

LN ] N+l

In particular, 1f we order the unknowns as follows

U(xy) U'(xy), U'(x



(2.7£) C1 = .

The vector U consists of the interpolation values U(xn), U'(xn)

ordered as in (2.6a). The vector f is given by

(

2 _ 1
£, = (£, b))
£ = (f, h) k=1, 2, ... N
(2.8) 2k ’ h‘; ’
forsr = (£, B
£ = (£, hi..)
| fawe2 » By

The following facts are particularly useful. If U(x), V(x) € s(h)

and U, V are the corresponding vectors of interpolation values - ordered
as in (2.6a) - then

(2.92) (Y, A(R) U>= (v', U')
and
(2.9b) <ﬁ, §>= (U, £)

where (U, f) denotes the familiar vector inner product, i.e.,

2N+2

(2.9¢) U, £)= E Uy fk .
k=1

There is another important matrix, Q(h). This matrix is characterized

by the fact that

e = amT = q(n)



and

(2.9d)

<Q(h) U, ¥>= (U, V)

Once more, it is convenient to describe Q(h) as a block tridiagonal

matrix.

(2.10a)

where

(2.10b)

(2.10c¢)

(2.104)

(2.10e)

(2.10£)

We have

n [T _
Q(h) ‘Zz_ﬁ' [Ek_l ’ Dk ’ Ek] ’ k=1, 2, ... N+¥2

2
D) = Dyyp = 40"
2
E, = [13n -3n°1 ,
312 0
D, = , k=2,3, ... N1 ,
0 8h?
54 - 13h
Ek- Py k-z’ 3’ -ooN ’
13h - 3n2
-13h
Egr ™ .
-3n%




3. THE ITERATIVE METHODS

To be consistent with the representation of A(h), Q(h) we partition

A

the vector U as ﬁ with

U, = I31
sz-z
(3.1) ﬁk = [ , k=23, ...N, N
GZk-l
| GN+2 - IAJ2N+2 :

Then the equations (2.6b) may be written as

(3.2) B, U

k k=—ck—1Uk—1-CkUk+l+ k’ k=1, 2’ LI} N+2 .

We use this representation to develop the block Jacobi and block SOR itera-

tive schemes to solve these equations.

0 ~,
Let a guess U be given. Then the block Jacobi iterates Uv+l are the

solutions of the problems

(3.3) g vl T oY

= - - +F =
L Ck—l Uk-l K F , k 1, 2, N+2

A related iterative procedure may be obtained as follows. Suppose N

is even, say N = 2J . Let
Bok-1 Cox-1
B, = , k=1,2, ...J34 ,
ct B

2k-1 2k



Y = y k=1,2, ... J+1 ,

O .

c
. J
~ - ~ 1
[ Uor-1 [ et
Vk‘ ’ Gk- 'y k-l’ 2, s e J+1 .
| Yok | T

The equation (2.6b) may also be written as

(302') G k‘l’ 2’ oo-,J+1 .

T
B Vie ™ Y1 V-1 T Ye Vi T G e

For this block representation the block Jacobi iterates Vv+1 are solutions
of the problems

' Wl _ T v v -
(3.3Y) Bk Vk Y -1 Vk_1 Yis1 Vk+1 + Gk’ k=1,2, ..., J+1 .

Given a parameter w, the block successive over-relaxation (SOR) itera-

tive schemes take the form

v+l T vl ) Mo~
(3.4) Bk Uk =~ Ck-l Uk—l - Ck Uk+1 + (l-w)Bk Uk + Fk .
VHL T _vil v v
' - - + (1 - + 3
(3.47) B Vi 0 Ypg Ve "0 Vg Vi T A - w8 Y G

Since (3.3), (3.3") are each a block tridiagonal iteration which 1s a
special case of block property A (see [7]) we know that: if p = p(J) is
the dominant eigenvalue of the iterative procedure (3.3), (3.3'), then the

optimal w = w
8

b is given by



(3.5) w. =1+ | —L

b
1+ »’1—92

Moreover, the dominant eigenvalue p(S) of the block SOR method is given by

2
(3.6) P(S) = w1 = S —

1+ A2

Thus, we are concerned with the dominant eigenvalue p = p(J) of the

eigenvalue problems

~ T ~ ~
(3.7) AB U +C U +C T =

(3.7") A Bk v

|
o
P

]
et

T
= 2
Kk + Yk—l Vk—l + Y Vk+1 2, ... JH1 .,

We are now able to state our basic estimates.

Theorem A: For the equation (3.7) we have
2 .2
(3.8) p(3) = 1 - 251 1% + o(n)

For the equation (3.7') we have

(3.8") 0(3) =1 - %-nz w2 + o)

4. ESTIMATING p = p(J)

As in [1) we write the eigenvalue problem (3.7) in the following form.

Let
(4.1) M = diag {Bl, BZ’ N BN’ BN+1’ BN+2}
T T
(4-2) N = - [Ck-l, 0’ Ck] ’ k = 1, 2’ o o0 N+2 .
Then

(4.3a) A(h) = M- N



and we are concerned with finding
(4.3b) p=p(J)=max{[x];(AM-N)E=0,E¢0}.

Lemma 4.1: The number p is itself an eigenvalue and may be characterized

by

~ o~

(4.4) p = Max <NU,UD

U0 <MU,TD
Proof: The matrix M is symmetric and positive definite while the matrix N
is symmetric. Moreover, because of block property A (see [7]), if A is an
eigenvalue then so is -A . Thus (4.4) follows from the classical Rayleigh
characterization of such eigenvalues (see [2]).

Lemma 4.2: We have the following estimates

(4.5) 1-Zr?n?vom® cp<1 .

Proof: Let U be the eigenvector associated with p . Then

Hence <{NU,UD> > 0 . However, A(h) is also positive definite (see (2.9a))
and
o = {NU, T
<Ay T,0>+<nT,0>

<1 .

To obtain the left hand inequality of (4.5) we employ the test
function: sinmx . Of course sinmx ¢ S(h), hence we use the interpolant.

That is, let Uo(x) € S(h) and satisfy

(4.6a) UO(xk) = sin.‘nxk .

(4.6b) Ué(xk) = T cos TX, .

10




Then,

p > <NU0’U0>

(MU, T

An easy calculation now completes the proof.

Having obtained these bounds, we proceed as in [l]. Let U be the

eligenvector associated with p . Then

pMU=NT

"
”~~
[

]
©
o’
2
=t

o A(h) U

Ah) T = [119] w2y T

oh?
We write
(4.7) Ah) T=ut) N T
where
(4.7a) u(n) = 28
ph
satisfies
5 2
(4.7p) 0 < u(h) Sz T 4+ 0(h)
and
) - 2
(4.7¢) N=h"N .

Lemma 4.3: For every U(x) € S(h), let U be the associated vector.

if h < 1 we have

Then,

11



N

N1
“.8  KNED<2{ny, 0650 % + D vy ?

k=1 k=0

Moreover, if U(x) satisfies

(4.9a) [uGx) - UCx,, )| < R u!/2

(4.9b) o' (e | < R 072

then
N

(4.10a) FUR=E ) v | + 6@
k=1

where

(4.10b) |8 | 5% r%h

Proof: A direct computation shows that

2 3
(NU,T)= h—s U'(xy) Ulx)) + 75 h U'(xy) U'(x)

2 3
- 55 0" Ggyp) UGy + 35 0" 0 U Gy

N
B Z Ul Ul

k=0

N
+ %; Ut Gq) [U(xk+1) - U(xk-l)]

3 N-1

+15 2, U0 U Gy)
k=1

12



Thus we obtain (4.8) from Schwarz's inequality.
Turning to the proof of (4.10), we see that the first and third terms
above are together bounded by %-th; so 15 the sixth term. The sum of the
2

second, fourth, and last terms is bounded by‘I% R"h. TFinally we look at

the fifth term. We note that

N
g UG Ulxyy,y) = %Z {[U(xk)]z + [U("k+1)]2}

k=0

N
- % Z [U(x - U(xk_*_l)]2 .

k=0

The last term in this expression is bounded by %'Rz and the lemma is
proven,
Lemma 4.4: TFor every U(x) € S(h) let U be the associated vector. Suppose

U(x) satisfies (4.9a), (4.9b). Then

(4.11a) Q) U,i>=nh Z lU(xk)IZ + o(U)
k=1

where

(4.11b) lo()| < Rh .

Proof: A direct computation shows that

13




Sl 4 3 fp 22
Qw TB> = o0’ {lv@|® + v}

26

+ 2w [0r @ vap - U@ ey

- g5 b0 [U'(O) U Gey) U U'(xN)]

N N-1 _
8 .3 2 6 .3 Z ,
+ %20 0 Z o) - 755 ® UGy UG )
=1 k=1

N
+32n Zlu(xk)l +ER R ) UG U,
=1

k=1
N
26 .2 ' _
+ %20 h Z U (xk) [U(xk+l) U(xk—l)]
k=1

The lemma now follows from the same pattern of proof as that given in
lemma 4.3.

Corollary 4.4: If U(x) satisfies (4.9a), (4.9b) then

KT = 2 am 3,5+ s - 2 0

1
-2 | iwl? ax+ s - Eow .
0

5. ©PROOF OF THEOREM A

We consider only (3.7) and (3.8). The arguments for (3.7') and 3.8")
are essentially the same. Let E be the eigenvector of (4.7). We know

that <§ E,E) > 0. So, we may normalize E so that

(5.1) (NT, 0> =1

14



Then (4.7) gives
(5.2) (T,Aam) T>= uch) TN

That is, if h is small enough,
1 2 - - 2
(5.3) U (x) | ax =<T,am)T) < 7° .
0

Then,

y
lux) - U] = lf ur(e) dae| < |x-y|Y2 0 .

X

Thus, (4.9a) holds with R=f . Moreover, as is well-known (see [2, p. 142])

there is a constant R2 so that (5.3) implies

(5.4) v @ | < B, /2

Applying corollary 4.4 we have
1 2 12 (* 2 12
(5.5) f |U'(x)| dx = u(h) 5 f IU(x)l dx + §(U) - 5 a(U) s
0 0

and

1
j(; luc) |2 dx=% + 0(h) .

Thus, we may rewrite (5.5) as

1 2
f lU'(x)] dx
5 0

12 1 2
-L |u(x) | dx

u(h) = 1+ o)

15
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5 2
>__.
2127

(5.6)

This result, together with (4.7b) proves

(5.7a) um =250 +om
i.e.,
(5.7b) p(3) =1 -2=m2 w2 +omd) .

12

6. COMPUTATIONAL RESULTS

The following tables summarize our computational experience with this

problem.
For the iteration (3.3). %E = 0.41666%
h Matrix Size p(J) 1 - (5/12)'n2 h2 1 - p)/'n'2 h2
1/4 8 0.7606 0.74298 0.38810
1/8 16 0.9368 0.93574 0.40982
1/16 32 0.984005 0.983936 0.41488
1/32 64 0.995988 0.995984 0.41626
1/64 128 0.9989963 0.9989960 0.41655
1/128 256 0.99974903 0.99974900 0.41662
For the iteration (3.3'). %- = (0,8333%
R 2.2
h Matrix Size o (J) 1-p)/t"nh
1/7 14 0.846647518 0.76135
1/15 30 0.964236885 0.81530
1/31 62 0.991487474 0.82886
1/63 126 0.997930534 0.83222
1/127 254 0.999490238 0.83306
1/255 510 0.999873525 0.83327
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